

DEEPWATER PIPELINE OR SHUTTLE TANKER

GULF OF MEXICO – WESTERN & CENTRAL PLANNING AREAS Deepwater Pipelines, Deepwater Fields, Shipping Lanes

CONSTRAINTS FOR OIL SHUTTLING SYSTEM IN GOM

- Pipeline Technology the Norm for GOM
- Politics (US and Oil Co.)
- Memories of the Exxon Valdez Incident
- Jones Act (US Vessels and Crews)
- Shipyard Capacity to Built Shuttle Tankers
- Risks Associated with Regulatory Gaps
- Risks of Going First Market, Timing

DRIVERS FOR OIL SHUTTLING SYSTEM IN GOM

- Future US Energy Needs
- Recent Signing of the ROD to allow FPSOs in GOM
- Economic Development of Deepwater Fields
 - Remote from Pipeline Infrastructure
 - Irregular Seabed Conditions for Pipeline in Deepwater
- Economic Development of Small Remote Fields
- Service Multi-fields Oil Segregation Possible
- Reusable (Service Life: 20 30 years)
- Reliable
- Proven Elsewhere
- Delivery of Oil to Various US Markets
- ^{23-Sep-2002} Cost Effective Alternative to Pipelines

SPAR WITH TWO CALM BOUYS

FPSO WITH TANDEM OFFLOADING

ISSUES & CHALLENGES FACING GOM SHUTTLE TANKERS (1)

- US Regulations & Guidelines for Shuttle Operations
 (Jones Act, Gaps Lightering Regs Only, Joint Operations Manual between Host & Shuttle need to be developed)
- Port Draught / Size Restrictions

 (40 ft draught, preferred refinery parcel size 500,000 bbl)
- US Shipyard Capacity, Experience, Cost & Schedule (4 – 5 US yards, \$116 - \$150 million > 2xKorea, 36+ months)
- Crews

(US Experience, Certification, Training, Pilots, Fatigue)

ISSUES & CHALLENGES FACING GOM SHUTTLE TANKERS (2)

Dynamic Positioning (if used)

(Ability to connect and remain connected – DP in Winter Storms/Loop Eddies/Squalls, Vessels' response wrt vessel size differences)

Telemetry Systems – Oil & VOC Return

(Reduce risks of spills during offshore loading standardize system for GOM, Green Line 'Oil' & Blue Line 'VOC', ESD I & II)

Cargo Handling

(Offloading, Pumping, Segregation, Heating, Metering, COW)

- Shuttle Schedule (Reliability, Ports)
- Emissions Air, Land & Sea

(In particular engine exhaust emissions and VOC from cargo tanks)

SHUTTLE TANKER SCHEDULE (Offshore Storage)

Schedule Durations

Overlap	0
Transit to Field	12
Approach Host	3
Connect	1
Offshore Loading	12
Flushing	1
Disconnect	1
Transit to Port	12
Pick Up Pilot	2
Transit to Terminal	6
Connect	1
Discharge Cargo	12
Stripping/Flush	3
Disconnect	1
Bunkers and Stores	4
Transit to Sea	6
	77

SHUTTLE TANKER SCHEDULE (Continuous " Offloading)

Schedule Durations

Overlap	4
Transit to Field	12
Approach Host	3
Connect	1
Offshore Loading	120
Flushing	1
Disconnect	1
Transit to Port	12
Pick Up Pilot	2
Transit to Terminal	6
Connect	1
Discharge Cargo	12
Stripping/Flush	3
Disconnect	1
Bunkers and Stores	4
Transit to Sea	6
	189

PIPELINE TARRIFS IN G.O.M.

Shallow Water

- 30 cents/bbl to 45 cents/bbl (own)
- 30 cents/bbl to 85 cents/bbl (other)

Deep Water

- 45 cents/bbl to 65 cents/bbl (own)
- 75 cents/bbl to 105 cents/bbl (other)

SHUTTLE TANKER TARRIFS (600,000 bbls)

- Own Shuttle Tanker
 - 35 cents/bbl 45 cents/bbl
- Other Shuttle Tanker
 40 cents/bbl 60 cents/bbl

CONCLUSIONS (1)

- Studies have shown that for deepwater fields, the cost per barrel for a shuttling system is cheaper than a pipeline system
- Studies have shown that the risks of oil spill associated with shuttling oil is comparable (EIS), if not less than those of a pipeline system
- The limits of pipeline technology are being stretched to accommodate fields in deeper, more remote locations and where the seabed conditions described as rugged

13

CONCLUSIONS (2)

- The provision of a shuttling system in the GOM has to be considered as a major challenge for the introduction of the first FPSO/FSO. But one that can be overcome through common sense and application good engineering practices. "Systems approach required"
- The ability for the FPSO/FSO to offload crude to a shuttle vessel is a major issue with regard to system uptime
- There no specific regulations for shuttle vessel operations. A Joint Operations Manual will be needed between the host facility and the shuttle vessels(s)

CONCLUSIONS (3)

- Setting up agreements with the intended discharge ports may significantly reduce shuttle schedule times
- Standardization of Systems (Offloading, Telemetry)
- Offshore discharge terminals (LOOP) will improve shuttle efficiency
- There are still some risks to be addressed:
 - Technical Engineering, Shipyards
 - Logistical Crews, Training
 - Regulatory Gaps

